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definiteness of a scheme, or monotonicity and total varia-
tion diminishing constraints. These constraints are violatedMany problems of fluid dynamics involve the coupled transport

of several, density-like, dependent variables (for instance, densities by linear higher-order numerical approximations [11].
of mass and momenta in elastic flows). In this paper, a conservative Powerful methods nowadays allow for the implementa-
and synchronous flux-corrected transport (FCT) formalism is devel- tion of various constraints into numerical schemes. One
oped which aims at a consistent transport of such variables. The

method of wide applicability and of particular importancetechnique differs from traditional FCT algorithms in two respects.
to the present study is the flux-corrected transport (FCT)First, the limiting of transportive fluxes of the primary variables

(e.g., mass and momentum) does not derive from smooth estimates originated by Boris and Book [5–7] and generalized by
of the variables, but it derives from analytic constraints implied by Zalesak [36]. Succinct reviews of this technique can be
the Lagrangian form of the governing continuity equations, which found in [31, 19, 35]. In geophysical applications, consider-
are imposed on the specific mixing ratios of the variables (e.g.,

ation is typically given to the transport problemvelocity components). Second, the traditional FCT limiting based
on sufficiency conditions is augmented by an iterative procedure
which approaches the necessity requirements. This procedure can ­r

­t
1 = ? (vr) 5 0, (1.1)also be used in the framework of traditional FCT schemes, and a

demonstration is provided that it can significantly reduce some of
the pathological behaviors of FCT algorithms. Although the ap-
proach derived is applicable to the transport of arbitrary conserved where v is an externally specified velocity vector and r
quantities, it is particularly useful for the synchronous transport of is an arbitrary density-like dependent variable. The FCT
mass and momenta in elastic flows, where it assures intrinsic stabil-

technique makes comparative use of both a first-order andity of the algorithm regardless of the magnitude of the mass-density
a higher-order time-step, and it ensures in effect that newvariable. This latter property becomes especially important in fluids

with large density variations, or in models with a material ‘‘vertical’’ local extremes in the higher order integration of r can only
coordinate (e.g., geophysical hydrostatic stratified flows in develop if they do so already in the first-order time-step.
isopycnic/isentropic coordinates), where material surfaces can col- This is a heuristic approach, but it is very successful in
lapse to zero-mass layers admitting, therefore, arbitrarily large local

providing smooth and nonlinearly stable integrations (cf.Courant numbers. Q 1996 Academic Press, Inc.
[30] for a discussion).

The original studies on FCT had a scope of a single
transport equation, but more recently some coupled sys-1. INTRODUCTION
tems have also been treated. Here consideration will be
given to the reduced set of elastic flow equationsThe usefulness of numerical transport algorithms has

traditionally been judged from the key properties of nu-
merical analysis which relate to stability, consistency, char- ­r

­t
1 = ? (vr) 5 0, (1.2)acteristics of conservation, and order of accuracy. It has,

however, been recognized for some time that the perfor-
mance of schemes often depends on ‘‘behavioral errors’’ ­Vl

­t
1 = ? (vVl) 5 Rl for l 5 1, L, (1.3)

[24] as well. Of particular importance is the representation
of properties which either derive analytically from the gov-
erning set of equations, or which have some useful numeri- where r denotes a density-like variable, and Vl 5 rvl de-
cal characteristics otherwise. Examples include the positive notes the momentum components. In general, the forcing

term Rl in (1.3) combines the pressure, buoyancy, and non-
conservative forces. A related system, namely the com-1 The National Center for Atmospheric Research is sponsored by the

National Science Foundation. pressible Euler equations, has been analysed by Löhner et
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al. [19]. They noted that the independent application of latter term merely refers to a smoothness of numerical
solutions. In contrast, our compatibility retains more ofthe FCT procedure to the individual equations produces

an excessive amount of ‘‘ripples’’ in the non-conserved the precise meaning of monotonicity as it ensures a prop-
erty which directly derives from the governing system ofquantities (such as v), and ultimately in the conserved

quantities as well. Furthermore, they have concluded that equations and does not rely on a first-order time-step.
In either incompressible or anelastic fluid problems, thethe use of the same coefficients for the FCT limiting of the

advective fluxes of all transported variables does greatly compatibility constraint can be easily incorporated in the
traditional FCT algorithms of Zalesak [36] (cf. Section 3.1improve the results. Related synchronization concepts

have also been employed by Harten and Zwaas [14] in in [31] for a discussion). In arbitrary fluid problems, it
can be met fairly easily in semi-Lagrangian models whichthe context of their hybrid scheme. Another successful

approach is that followed by Grabowski and Smolarkiewicz integrate the material form of the governing fluid equations
[32, 34]. In contrast, in the context of elastic fluids in conser-[12], who applied FCT techniques to treat the combined

advection–condensation problem as it is posed by the wa- vative Eulerian formulation, implementation of the com-
patibility constraint is not necessarily a trivial task, as itter substance in atmospheric numerical models. However,

as their FCT procedure makes explicit use of the specific depends on several prognostic variables. One approach to
the problem was recently outlined by Larrouturou [18],forcings for the problem at hand, they cannot be directly

extended to a general problem of the form (1.2)–(1.3). who considered the problem of a gaseous mixture of sev-
eral species. He ensured that all the fluxes in the continuityThe difficulties which arise from full systems of equations

are due to the dynamical coupling. In the case of (1.2)– and constituents equations correspond to the same discrete
mass flux, and thereby obtained a scheme that guarantees(1.3), the coupling occurs for two reasons, namely (i)

through the forcing terms R and (ii) through the velocity monotone and positive definite transport of the individual
mass fractions.v 5 V/r itself. Unlike some studies of compressible gas

dynamics (cf. [15, 22]), the current paper considers exclu- In contrast to [18], our implementation of the compati-
bility constraint follows classical FCT ideas, at least to thesively the coupling of category (ii), and the forcings in (1.3)

will hence be dropped. extent that flux-limiting coefficients are separately com-
puted for the incoming and outgoing fluxes. This approach,With R 5 0, the system (1.2)–(1.3) is formally identical

to the simultaneous transport of the density r and some which is the foundation of all FCT algorithms, is based on
sufficiency rather than necessity conditions. This impliesadditional conserved quantities (hereafter, substances Al

for brevity), i.e., that some portion of the fluxes may unjustifiably be re-
jected and indicates that FCT algorithms are in general
more diffusive than they would need to be in order to­r

­t
1 = ? (vr) 5 0, (1.4) achieve the desired property. More seriously, this diffusive

effect can be highly localized, and this can lead to patholog-
ical behaviors. For instance, it is well known that the advec-­Al

­t
1 = ? (vAl) 5 0 for l 5 1, L, (1.5)

tion of a simple sinusoidal anomaly with FCT does intro-
duce serious distortions, such that the advected sine curve
finally resembles a sawtooth-like pattern. Here it will bewhere the velocity-field is assumed to be prescribed. Unlike
demonstrated how the classical FCT treatment can be aug-the treatment in [19], the technique to be developed in the
mented by an iterative procedure which approaches thecurrent paper is not based on the traditional FCT limiting
necessity requirements and reduces the diffusive effects.conditions for Al and r, but rather on a consistency relation
This treatment is of interest beyond the compatibility con-between Al and r. This relation follows by converting (1.5)
straint addressed in this paper and is applicable in theinto the Lagrangian form
framework of other FCT algorithms.

Several sophisticated high-resolution finite difference
transport schemes (see [20] for a succinct review) haved

dt SAl

r
D5 0 (1.6)

been suggested in recent years. The purpose of the current
paper is not to provide yet another such scheme, nor to
address the competitiveness of a particular scheme, butwhich expresses the conservation of the substances’ mixing

ratios Al/r along flow trajectories. It implies that the value rather to extend the existing basic FCT methodology to
a broad and important class of applications. The ideasof Al/r at time t 1 Dt is bound by the values in the immedi-

ate environment at time t. Further, in this paper, for the proposed are applicable in essence with any FCT algo-
rithm. For the examples provided in the paper we havesake of brevity, such a property will be referred to as

compatibility. Although FCT transport algorithms are of- selected two schemes to provide the underlying higher-
order fluxes, namely one scheme which is by itself almostten referred to as monotonicity-preserving schemes, the
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compatible (the second-order positive definite MPDATA of any time-step and do not depend on first-order esti-
mates, as in traditional flux-corrected transport [12]. In-scheme [28]) and one scheme which is by itself far from

being compatible (the Lax–Wendroff scheme [24] en- stead they derive from the Lagrangian form of the trans-
port equations.hanced with classical FCT).

The outline of the paper is as follows: In Section 2, a
2.2. Examplemore thorough definition of compatibility follows, together

with numerical examples which demonstrate that compati- Although compatibility is an obvious property of the
bility can indeed be a crucial issue. The synchronous flux coupled system (1.4)–(1.5), it is violated by most conserva-
correction technique will be derived in Section 3. In Section tive numerical techniques. In fact, the only compatible and
4 consideration will be given to the iterative application conservative finite-difference scheme which we are aware
of flux corrections. Some numerical tests then follow in of is the first-order upstream scheme. For this scheme,
Section 5, and the study is concluded in Section 6. Some compatibility can formally be established (for an outline
mathematical details are referred to the appendices. of the proof see Appendix A). For a brief demonstration

of some of the difficulties which occur with incompatible
2. COMPATIBILITY schemes we now turn our attention to an idealized defor-

mation test. Consideration is given to a system of two one-
2.1. Definition

dimensional transport equations
Consider a finite-difference numerical integration of the

system (1.4)–(1.5) in two-dimensional geometry and with ­r

­t
1

­(ur)
­x

5 0,
­A
­t

1
­(uA)

­x
5 0, (2.5)dimensionless grid-spacings and time-step (Dx, Dy, Dt) 5

(1, 1, 1). The discretization takes the form

with an externally specified deformation-flow of the form
c n

i, j 5 c ux5i, y5j, t5n , (2.1)

u(x) 5 2x.
where the symbol c stands for any of the variables r
and Al . For arbitrary initial conditions ro(x) and A0(x) valid at

Under ‘‘compatible transport’’ we understand a numeri- time t 5 0, the closed-form solution is
cal integration of (1.4)–(1.5) which is consistent with the
advective form (1.6) of Eq. (1.4). More precisely, in a r(x, t) 5 et ro(xet), A(x, t) 5 et Ao(xet). (2.6)
finite difference approximation which is subject to the CFL
criterion, information can travel at most over one grid-box These formulae express that the shape of the anomaly
per time-step. It then follows from (1.6) that the value of remains unchanged except for some shrinking in the x-
the mixing ratio direction and an associated change in amplitude. Through-

out the evolution, the mixing ratio a 5 A/r obeys
al :5 Al/r (2.2)

a(x, t) 5 ao(xet) (2.7)
at time-level n 1 1 is limited by the values of al at time-
level n at the surrounding grid-points. This is expressed as and remains globally bounded by its initial extrema. Here

we again use the convention that lower-case al denote the
(al)min,n11

i, j # (al)n11
i, j # (al)max,n11

i, j , (2.3) mixing ratios and upper-case Al denote the concentrations.
The initial conditions to be used in the following finite

with difference tests are sketched in Fig. 1. The initial distribu-
tion of the density-field r is specified as a localized anomaly

(al)min,n11
i, j :5 min

ui2i9u#1
u j2j9u#1

h(al)n
i9, j9j, (2.4a) surrounded by ‘‘vacuum’’; i.e.,

(al)max,n11
i, j :5 max

ui2i9u#1
u j2j9u#1

h(al)n
i9, j9j, (2.4b)

ro(x) 5 5
1 2 x for 21 # x # 0

1 for 0 # x # 1,

0 otherwise,

(2.8)

where (i9, j9) excludes grid-points with r 5 0, where the
mixing ratios are ill-defined.

Unlike in traditional flux-corrected transport [12], the while the mixing ratio is specified as a symmetrical step-
type functionbounds appearing in (2.4) are available prior to execution
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FIG. 1. Initial conditions for the deformation test. The left-hand panel shows the density r and the concentration A, the right-hand panel shows
the mixing-ratio a 5 A/r.

less, the mixing ratio remains globally bounded accordingly
to (2.7) and (2.9) byao(x) 5 51 for uxu $ 0.75

0.2 otherwise.
(2.9)

0.2 # a(x, t) # 1. (2.11)

Physically speaking, the mixing ratio ao is ill-defined in the
The conservation of these bounds is a result of the up-massless regions at uxu . 1 (indicated in Fig. 1 by the dotted
stream scheme being compatible. On the other hand, theline). This situation has already been alluded to at the end
second-order MPDATA scheme, while reducing theof Section 2.1, and some implications will later be discussed
amount of implicit diffusion, results in significant violationsin Section 5.1.
of (2.11). The maximum violation is a 5 1.248 and it occursFor the numerical tests, a grid spacing of Dx 5 0.05 and
near the left-hand flank of the anomaly, at a grid-pointa time step of Dt 5 0.025 are adopted, and the integrations
with r 5 0.056 (cf. Fig. 2b, right-hand panel). This violationare carried out over 40 time steps to t 5 1. The computa-
arises from incompatibilities between the transport of Ational domain is given by uxu # 1.5, but only the central
and r.portion of it is shown in the diagrams. The first two tests,

Compatibility is not restored by classical flux-correction.shown in Fig. 2a and Fig. 2b, are based on the numerical
For demonstration, Fig. 3 shows the results of the deforma-integration of (2.5) with the first-order upstream scheme
tion test for FCT-versions of MPDATA (left-hand panels)and the second-order positive definite MPDATA scheme
and of the one-step Lax–Wendroff scheme [24] (right-hand[28] with two corrective iterations (IORD 5 2), respec-
panels). Since the distributions of r and A are similar totively. The panels on the left-hand side depict the density
that shown in Fig. 2b (left-hand panel), only the mixingr and the concentration A. The mixing ratio of A is shown
ratio is shown. The panels in (a) are for classical flux correc-in the right-hand panels. For the sake of coding efficiency
tion according to [31, 6, 36]. For the MPDATA-scheme,it is here defined as
it is evident that the application of classical flux-correction
in fact amplifies the incompatibilities between the two
transported quantities. The maximum violation of (2.11)a 5

A
r 1 «

with « 5 10215. (2.10)
is now a 5 1.391 as compared to a 5 1.248 without flux
correction. For the regular (no FCT) Lax–Wendroff
scheme the results are disastrous since the scheme is notThe diagrams are displayed in a stretched fashion (note

labels on the axes) such that the shape of the analytical sign-preserving. When sign-preservation is restored by
FCT (right-hand panels in Fig. 3) the violation of compati-solution does match that of the initial conditions in Fig. 1.

As a result of this stretching, the number of grid-points bility is also pronounced, and values of a . 100 are ob-
tained.visible in the diagram is reduced from 61 in Fig. 1 to 23

in Fig. 2. The panels in Fig. 3b are for synchronized flux-correction
according to Löhner et al. [19]. Their procedure involvesFor the upstream experiment in Fig. 2a, the distribution

of A and r reveals significant implicit diffusion. Neverthe- the use of the same flux-correction coefficients
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FIG. 2. Numerical solution to the deformation test at time t 5 1. In (a), the fields A and r are transported by using the first-order upstream
scheme. In (b), the second-order MPDATA scheme [28] is used instead. The left- and right-hand panels are in the same format as in Fig. 1, except
for some shrinking in the x-axes (note labels). The thin line in the right-hand panels is the analytical solution.

bOUT
i 5 minhbr,OUT

i , bA,OUT
i j,

(2.12)
able or not. Consider, for instance, the instantaneous re-
lease of a gas into the vacuum. Here the variables to be

bIN
i 5 minhbr,IN

i , bA,IN
i j, transported are mass and momentum, and the properties

of the gas-front will heavily depend on the conservation
for both the equations. Here br,OUT and br,IN denote the of both these quantities. Incompatibilities can have serious
classical correction coefficients for, respectively, the outgo- consequences on the stability of the algorithm, since the
ing and incoming fluxes of the r-equation (see (3.7) in ‘‘mixing ratio’’ of momentum corresponds to the velocity
Section 3). It can be seen from Fig. 3b, that this synchroni- and defines the stability of the scheme through the
zation is indeed highly beneficial. In the case of the Courant–Friedrichs–Levy criterion.
MPDATA scheme, the maximum violation of (2.11) is The discussion of the deformation test will be resumed
reduced to a 5 1.081. In the case of the Lax–Wendroff in Section 5.1, where the compatible synchronization tech-
scheme, the improvement is also remarkable. Although nique to be developed below will be evaluated.
the maximum violation of a is still large, it occurs further
away from the anomaly in a low-density environment. 3. A SYNCHRONOUS AND COMPATIBLE

It is quite typical that the violation of compatibility is FLUX-CORRECTION FORMALISM
strongest in the almost massless regions near the edge of
the anomaly, where the density variable rapidly changes Consider the numerical integration of (1.4)–(1.5) that

involves a first-order time-step followed by a second-orderby many orders of magnitude. It depends on the nature
of the application whether such incompatibilities are toler- corrective-step. For the variables c 5 hr, Alj this is
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FIG. 3. The mixing-ratio a 5 A/r for the deformation test with the MPDATA scheme (left-hand panels) and the Lax–Wendroff scheme (right-
hand panels). In (a), the fluxes of these schemes are subject to classical flux correction [6, 7, 36]. In (b), the synchronization suggested by [19] is employed.

c n11
i, j 5 c0n11

i, j 1 c9n11
i, j , (3.1) SAl

r
Dmin,n11

i, j
# SA0

l

r0Dn11

i, j
# SAl

r
Dmax,n11

i, j
. (3.3)

where c0 and c denote the first- and higher order approxi-
mations, respectively. The higher order correction c9 is Otherwise c 0 and c9 can represent an arbitrary splitting
given as the convergence of the anti-diffusive fluxes on a of an arbitrary order of accuracy numerical scheme. This
two-dimensional staggered mesh, i.e., property of the present derivation will further be utilized

in Section 4, but for the current subsection one can think
c9i, j 5 F c,1

i21/2, j 2 F c,1
i11/2, j 1 F c,2

i, j21/2 2 F c,2
i, j11/2 , (3.2) of c0 and c as first- and second-order approximations, re-

spectively.
where the two superscripts of the flux F refer to the quan- Incompatibilities, i.e. violations of (2.3), arise from the
tity under consideration (i.e., r or one of the Al-substances) inadequate estimation of the higher-order anti-diffusive
and to the component of the flux, respectively. Note that fluxes Fc. The aim of the flux-correction technique is thus
for ease of notation we will suppress the time-level super- to reduce these fluxes by some factor b, e.g.,
scripts n 1 1 wherever possible.

The form (3.1) is also formally applicable to schemes
F̃ c,1

i11/2, j 5 bc,1
i11/2, j F c,1

i11/2, j , (3.4)which do not explicitly involve the computation of the first-
order approximation c 0. More generally, the only formal
requirement to be utilized below is that c0 5 hr0, A0

l j is such that (2.3) is met. As in classical flux-correction, it is
stipulated thatcompatible, i.e., satisfies relation (2.3) in the form
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0 # bc,1
i11/2, j # 1, (3.5)

(al)max
i, j r0

i, j 2 (A0
l )i, j $ (Ã9l )i, j 2 (al)max

i, j r̃9i, j . (3.10b)

where b ; 0 and b ; 1 recover the first-order and the
This form of (2.3) serves to separate the terms that canfull second-order approximations, respectively. The flux-
directly be computed from the first-order time step (oncorrected time-step is then given by (cf. 3.1)
the left-hand side) from those which are affected by the
flux-correction (on the right-hand side). It is apparent from

ĉi, j 5 c0
i, j 1 c̃9i, j , (3.6) this equation that the flux-correction associated with either

one of the variables r or Al can contribute to satisfy (3.10).
where c̃9 denotes the convergence of the corrected fluxes Some concept is therefore required as to how to distribute
F̃c, and ĉ is the flux-corrected second-order approximation. the flux correction onto the variables. Here we have fol-

An important objective of flux-correction is the maximi- lowed an idea that could be termed ‘‘equitable flux lim-
zation of b (in some loose sense to be discussed later) in iting.’’ It is based on the recognition that it is not possible
order to keep the numerical scheme as inviscid as possible. to figure out to what amount the two equations are respon-
Following the pioneering work of Boris and Book [6, 7] sible for a violation of (3.10), and it aims at establishing
and Zalesak [36] the flux-limiting operation (3.4) will be similar correction-coefficients b for the various vari-
cast into the form ables.

For brevity the derivation of the correction coefficients
F̃ c,1

i11/2, j 5 (F c,1
i11/2, j)1minh1, bc,OUT

i, j , bc,IN
i11, jj

(3.7a)
is referred to Appendix B. In the case of L 5 1 substance
equation of type (1.5), the correction coefficients appearing1 (F c,1

i11/2, j)2minh1, bc,IN
i, j , bc,OUT

i11, j j,
in (3.7) for substance A are given by

F̃ c,1
i, j11/2 5 (F c,1

i, j11/2)1minh1, bc,OUT
i, j , bc,IN

i, j11j
(3.7b)

1 (F c,1
i, j11/2)2minh1, bc,IN

i, j , bc,OUT
i, j11 j, bA,OUT

i, j 5
amin

i, j r0
i, j 2 A0

i, j

Aout
i, j 2 (amin

i, j )1rin
i, j 2 (amin

i, j )2rout
i, j 2 «

, (3.11a)

where
bA,IN

i, j 5
amax

i, j r0
i, j 2 A0

i, j

Ain
i, j 2 (amax

i, j )1rout
i, j 2 (amax

i, j )2rin
i, j 1 «

. (3.11b)

x1 5 maxh0, xj, x2 5 minh0, xj (3.8)

Here « is a small number (e.g., « 5 10220), and the terms
denote the non-negative and non-positive part of x. The c in

i, j and c out
i, j denote the contributions of the in- and outgo-

approach exposed by (3.7) establishes, for each of the vari- ing fluxes to c9i, j as defined by (B2). The correction coeffi-
ables c 5 hr, Alj, two correction coefficients, bc,IN and cients for the density r can be computed from those of
bc,OUT, at every grid point, which are used for the limiting A with
of incoming and outgoing fluxes, respectively. The term
bc,OUT represents the maximum fraction of the outgoing br,IN

i, j 5 minhbA,IN
i, j 1 sign1(amax

i, j ), bA,OUT
i, j 2 sign2(amin

i, j )j,
fluxes at a point that can be allowed without violating the (3.12a)
constraint (2.3) at this particular point, while bc,IN repre-

br,OUT
i, j 5 minhbA,OUT

i, j 1 sign1(amin
i, j ), bA,IN

i, j 2 sign2(amax
i, j )j.sents a similar quantity for the incoming fluxes. Taking the

minimum in the way described by (3.7) ensures that all (3.12b)
the constraints are satisfied. The appearance of unity in
the min-function ensures that (3.5) is met. Here

In contrast to classical flux-correction, the correction
factors b depend on several coupled equations. This is
brought out after using (3.6) to cast the compatibility condi- sign1(x) 5 [sign(x)]1 5 51 if x $ 0

0 if x , 0
(3.13a)

tion (2.3) into the form

(al)min
i, j #

(A0
l )i, j 1 (Ã9l )i, j

r0
i, j 1 r̃9i, j

# (al)max
i, j . (3.9) sign2(x) 5 [sign(x)]2 5 5 0 if x . 0

21 if x # 0
(3.13b)

Some simple manipulations of (3.9) then yield the inequal- is a flag indicating the sign of a number. Equation (3.12)
ities is in essence the coding-efficient form of a conditional Min-

statement. The sign6-functions (including their leading
(al)min

i, j r0
i, j 2 (A0

l )i, j # (Ã9l )i, j 2 (al)min
i, j r̃9i, j , (3.10a) signs) have always the values 11 or 0. In the first case, the
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corresponding term does not contribute towards reducing ĉ (k11)
i, j 5 ĉ (k)

i, j 1 c̃ (k)
i, j (4.1)

br below 1 (i.e., the term is inactive), while in the second
case the corresponding term is active and feeds a value and
of bA into br. The simple form of (3.12) is of practical
importance since the expensive computations in (3.11) only

F̃(k)c,1
i11/2, j 5 b(k)c,1

i11/2, j F(k)c,1
i11/2, j , (4.2)

occur for the substance equation, but not for the continuity
equation. In coding (3.12), care should be exercised with

where k denotes the iteration-step and c̃(k) refers to thethe sign6-function. Note in particular that sign1(0) 5
divergence of the fluxes F̃(k). The start of the iteration is2sign2(0) 5 1.
defined by the anti-diffusive fluxesEquation (3.12) implies that each of the two limiting

coefficients for r is either larger than unity (and does not
contribute to reducing the fluxes), or equal to one of the F(0)c 5 Fc (4.3)
two limiting coefficients of A, e.g., br,IN

i, j 5 bA,OUT
i, j or

br,IN
i, j 5 bA,IN

i, j . This feature illustrates the above-exposed and by the first-order approximation
idea of equitable flux limiting, since the approach will share
the flux correction approximately equally between the two ĉ (0) 5 c 0. (4.4)
variables A and r. Note further that the correction coeffi-
cients may be such that bA,OUT

i, j ? br,OUT
i, j ; i.e. the resulting

The first iteration-step constitutes the flux-correction pro-procedure is distinct from that suggested in [19].
cedure as sketched in Section 3.1. Following this step, theThe correction coefficients (3.11), (3.12) apply to a cou-
fluxes F(1) are defined as the remaining fluxes, i.e., thepled system of equations consisting of a continuity equation
fluxes which were not applied during the previous iteration-(1.4) and L 5 1 substance equations of type (1.5). These
step(s). More generally, this takes the formcoefficients will be used in the computational examples in

Section 5. In the general case of an arbitrary number L of
F(k)c 5 F(k21)c 2 F̃(k21)c. (4.5)substance equations, the correction coefficients b ap-

pearing in (3.7) are listed in Appendix B as (B10) and
(B11). Additional flux-correction steps can now be carried out

with the expressions for the correction coefficients, i.e.,
(3.7), (3.11)–(3.12), but using c (k) and F(k)c instead of c 0

4. ITERATIVE FLUX-CORRECTION and Fc.
The potential usefulness of this iterative technique de-4.1. Concept

rives from the fact that the iteration never decreases the
It is a general property of flux-correction schemes that portion of the accepted fluxes and does always possess

the limiting of the fluxes is achieved in a heuristic sense. the desired property of the FCT (e.g., compatibility or
For instance, the limiting of the incoming fluxes in a partic- monotonicity) at any step k of the iteration. A technical
ular grid-box is always undertaken by assuming a ‘‘worst- advantage of the iterative application is, furthermore, that
case scenario’’ for the outgoing fluxes. This procedure it does require only a little additional coding.
yields a good cost-benefit ratio and a fully satisfactory A thorough ‘‘experimental’’ analysis of the iteration re-
scheme for many applications. At the same time, however, quires the definition of quantities which measure the
it is not ‘‘optimal’’ in a formal sense. A strict optimization ‘‘transmitted’’ and ‘‘rejected’’ portion of the higher-order
of the flux limiting in a formal sense would indeed require fluxes. The first such quantity is defined accordingly to
us to evaluate the limiting coefficients by minimizing some
functional of the form o (br

i, j 2 1)2 1 o (bAl
i, j 2 1)2 while

simultaneously satisfying the conditions (2.3) and (3.5). R(k),c 5 HO [(F (k11),1,c
i11/2, j )2 1 (F (k11),2,c

i, j11/2 )2]

O [(F (0),1,c
i11/2, j)

2 1 (F (0),2,c
i, j11/2)

2] J1/2

(4.6)
Such an approach would fully couple the correction-coef-
ficients and, therefore, yield a computationally intensive
procedure. As an alternative, we present in this section an for each substance c, and it measures the relative magni-

tude of the rejected portion of the c-fluxes after the execu-iterative technique, which increases the ‘‘accepted’’ por-
tion of the higher order fluxes without, however, being tion of k iteration steps. The sum in (4.6) runs over the

whole computational domain such that R represents a do-optimal in the formal sense exposed above. This new tech-
nique is based on the repeated application of the flux- main average. Optimal flux-correction should attempt to

approach R 5 1, while the rejection of all the fluxes resultscorrection, and it is applicable to any type of FCT.
To this end, Eqs. (3.6) and (3.4) are generalized in the in R 5 0. Alternatively, the behavior of the kth iteration

in accepting the fluxes is evaluated withsense of
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is advected during one time unit. In this case, the plain
t (k),c 5 1 2

R(k),c

R(k21),c . (4.7) Lax–Wendroff scheme produces spurious under- and over-
shoots (panel b), which are suppressed by either traditional
or iterative flux-correction (panel c and d). In this particu-Note that t measures the effect of the kth iteration alone,
lar example the effect of the iterative flux correction israther than the cumulative effect of the preceding itera-
weak and not visible in the diagrams.tions as does R. The quality measures defined in (4.6) and

In summary, the two examples demonstrate that the(4.7) will later be evaluated for some numerical examples
iterative application of flux correction does drastically re-of Section 5.
duce some pathological aspects of FCT, while fully re-
taining the benefits.

4.2. One-Dimensional Advection Test

It is well known that flux correction can introduce certain 4.3. Application to the Compatible Transport Formalism
pathological behaviors. This is particularly obvious in some

As illustrated above, iterative flux correction can beexamples which would not require any flux correction,
beneficial, even in the context of traditional limiters. It is,such as the advection of smooth anomalies. An example
however, likely to be more important in synchronous fluxis shown in Fig. 4. It illustrates the advection of a sinusoidal
correction, where complex limiting constraints can lead todistribution with the Lax–Wendroff scheme. The numeri-
the ‘‘unjustified’’ rejection of a substantial fraction of thecal resolution in the periodic domain [20.5, 0.5] is set to
higher order fluxes. Here we discuss how the iterative pro-

Dx 5 0.025, and we consider advection with velocity 1
cedure can be applied to the compatible transport schemeduring 100 time units and with Courant number 0.5 (corre-
designed in Section 3, but consideration is given also to thesponding to 8000 time-steps). Panel (a) illustrates the ana-
coupling of the latter limiting to traditional flux corrections.lytical solution, while panel (b) presents the Lax–Wendroff

With the implementation of the compatibility constraintsolution without flux correction. It can be observed that
(2.3) onto the mixing ratios al 5 r/Al , there is no formalthere is a significant phase error, which has accumulated
guarantee that any of the primary variables r and Al be-over the long integration time, but the amplitude and the
haves nonoscillatory. It is therefore desirable to couple theshape of the sine curve are rather well preserved. Panel
synchronous flux limiting to other flux-correction proce-(c) shows the results of the same test but with the Lax–
dures. Such an attempt is straightforward, since the classi-Wendroff scheme enhanced by the traditional FCT proce-
cal flux corrections can be applied to the individual fieldsdure [36]. Several major deficiencies are apparent. There
prior to feeding the fluxes into the synchronous flux-correc-is a drastic reduction in amplitude, and the symmetry of
tion procedure described in Section 3. With this generaliza-the sine curve is seriously distorted.
tion, the synchronous and iterative flux-correction codeThese errors are reduced drastically when using the iter-
comprehends the following steps:ative flux-correction procedure with two iteration steps

(panel d). For the numerical example in this latter panel (i) compute first-order time step c0,n11 and higher
the procedure outlined in Section 4.1 is followed. The first order fluxes,
of the two iteration steps corresponds to the traditional (ii) apply classical flux correction to higher order
flux limiting. In the second step, the fractions of the higher fluxes (optional),
order fluxes which were rejected during the first iteration

(iii) compute the bounds (2.4) based on data fromare computed from (4.5) and corrected using the same
time-level n,traditional FCT procedure as in the first step. As can be

seen from Fig. 4d, this second iteration restores the ampli- (iv) compute the divergence of incoming and outgo-
tude of the numerical solution towards its analytical coun- ing higher order fluxes for all the fields according to (B2),
terpart. The gain in amplitude is more than 100%, and (v) compute the correction coefficients with (3.11),
the asymmetries are almost completely removed (compare (3.12),
with Fig. 4c). There is still some slight loss in amplitude

(vi) carry out flux-correction step according to (3.7),when comparing to the plain Lax–Wendroff solution (Fig.
4b), but at the same time the phase error is slightly reduced. (vii) compute flux divergence of corrected fluxes and
It follows that most of the behavioral error evident in Fig. update the first-order estimate to the flux-corrected higher
4c is the result of unjustifiably rejecting some portion of order estimate,
the higher order fluxes. (viii) compute ‘‘rejected’’ fluxes with (4.5) and proceed

It is important to note that the iterative application of with next iteration step at (iv).
FCT always preserves the beneficial aspects of the original
formulation. This is illustrated in Fig. 5 which shows a In the sequence above, only the synchronous flux correc-

tion is iterated. An alternative sequence could be con-similar advection test but with a step-like anomaly that
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FIG. 4. One-dimensional advection of a sinusoidal anomaly with Courant number 0.5 in the periodic domain [20.5, 0.5]. The advective velocity
is 1 and the integration time is 100. The panels show (a) the analytical solution, (b) the numerical Lax–Wendroff solution, (c) the traditional flux-
corrected Lax–Wendroff solution, and (d) the Lax–Wendroff solution with two iterative flux-correction steps.

structed by treating the traditional flux correction within cording to [19]. The price to pay is a slight loss in the
the iterative loop as well. Some tests have, however, indi- amplitude of some of the finer scale features in r and A.
cated that the resulting gain is small, presumably since the This loss is, however, comparable to that associated with
dominating flux correction is often the compatible rather Löhner synchronization (cf. Fig. 3b): In the case of the
than the traditional one. plain MPDATA-scheme, the maximum of the A variable

at time t 5 1 is Amax e21 5 0.694. The respective values
5. TESTS AND COMPUTATIONAL EXAMPLES for the synchronization according to [19] and according to

Section 3 are Amax e21 5 0.615 and Amax e21 5 0.616,
5.1. Application to the Deformation Test respectively. These values are significantly above Amax

e21 5 0.524, obtained with the first-order upstream scheme.We now briefly return to the deformation test introduced
From a physical point of view, the mixing ratio becomesin Section 2.2. Figure 6 shows the results when the synchro-

ill-defined at locations with zero density. In our analyticalnous flux-correction technique is employed with two itera-
solution this happens at uxuet . 1. In a numerical approxi-tive steps. The underlying schemes used for the generation
mation, however, r 5 0 is only approximately realized, andof the second-order fluxes are again the MPDATA-scheme
the mixing ratio remains well defined at locations where(Fig. 6a) and the Lax–Wendroff scheme (Fig. 6b). For

comparison with other flux-correction schemes the right- its analytical counterpart is not. At these locations the
appropriate value of the mixing ratio can be inferred fromhand panels should be compared with Fig. 3.

The results demonstrate how the synchronous flux cor- physical arguments: The mass at uxuet . 1 is the result of
(implicit) numerical diffusion, and it must have originatedrection successfully restores compatibility for both the

schemes. The predicted mixing ratio a 5 A/r now fully from uxuet P 1. This implies that it must have the properties
of the mass originally located at uxu P 1, i.e., a 5 1. Thesatisfies (2.11) and (2.3), which was not the case for classical

flux correction (cf. Fig. 3), even when synchronized ac- tendency to produce this value for uxu . 1 can be identified
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FIG. 5. As Fig. 4 but for a step function and integration time 1.

in the diagrams for the upstream as well as the MPDATA tracking of the intersections, but it also introduces notable
numerical difficulties associated with the large relative vari-scheme (cf. Fig. 2 and Fig. 3) and is clearly evident in the

flux-corrected results of Fig. 6. This physically consistent ations of the layer-depth variable near the intersections.
behavior directly derives from the proper implementation In particular, in conservative formulations the velocity
of compatibility as defined in Section 2.1. must be diagnosed from the momentum and layer-depth

variables by a division, and this division becomes ill-defined
5.2. Spreading of a Drop of Shallow Water in the collapsed layers. This issue requires highly consistent

(or compatible) fields near the intersection, where bothThe shallow water equations are closely related to the
layer depth and momentum must simultaneously tend tocompressible flow equations, and they can also serve as a
zero with their ratio always being well defined. With incom-framework to test numerical concepts related to hydro-
patible time-stepping procedures, the diagnosis of the ve-static geophysical flow problems with material vertical co-
locity variable can easily yield infinite velocities, which willordinates. This includes, in particular, vertical discretiz-
immediately terminate the integration through the viola-ations based upon isentropic surfaces (constant potential
tion of the CFL-criterion.temperature), or isosteric and isopycnic surfaces (constant

Here a related numerical test is presented within thedensity). Atmospheric and oceanic numerical models of
framework of the one-dimensional shallow-water (or shal-this type have a long history. An overview and a succinct
low-fluid flow) equations. The test is based on an analyticalaccount of key numerical issues can be found in Bleck [3].
solution, and its purpose is to demonstrate how the pro-For some more recent material the reader is referred to
posed synchronous flux correction is able to correctly[4, 1, 23].
handle collapsed surfaces in models with material verticalIf the computational surfaces in these models intersect
coordinates. In dimensionless notation, the governingwith the underlying topography (or with each other), they

can numerically be represented as partially collapsed [2]. equations, in absence of surface friction and background
rotation can be expressed as (see [25])This is an attractive strategy as it avoids the explicit
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FIG. 6. As Fig. 2, but with application of the compatible synchronization technique with NITTE 5 2 iterations. The underlying schemes are
(a) the second-order MPDATA scheme and (b) the Lax–Wendroff scheme.

velocity across the drop is a linear function of x. In our­Hu
­t

1
­(uHu)

­x
5 2H

­H
­x

, (5.1) case, the dimensionless solution can be represented by

H(x, t) 5 l21[1 2 (x/l)2] (5.4)­H
­t

1
­(uH)

­x
5 0, (5.2)

u(x, t) 5 x(lt/l), (5.5)
where u is the velocity in the x-direction, and H is the

where l describes the half-width of the drop, and lt 5depth of the fluid layer. We consider the spreading of a
­l/­t is the velocity of the leading edge. Following [9],parabola-shaped two-dimensional drop of shallow water
the function l(t) is obtained numerically as the root ofon a horizontal plane. The drop is initially confined to
the equationuxu # 1 according to

t 5 As[Ïl(l 2 1) 1 ln(Ïl 2 1 1 Ïl)] (5.6)
H(x, t 5 0) 5 51 2 x2 for uxu # 1

0 for uxu $ 1
(5.3)

and

lt 5 2Ï1 2 l21. (5.7)and at rest. Upon releasing the drop, it spreads under the
effect of gravity. The temporal evolution of this system
has been analytically investigated by Frei [9]. He noted The analytical solutions for t 5 0, 1, 2, and 3 are shown in

Fig. 7a. They represent an excellent test case for numericalthat the parabola shape is always retained and that the
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correction technique of Section 3 with NITTE 5 2 itera-
tions. The underlying higher-order fluxes are obtained
from the second-order MPDATA scheme (IORD 5 2).
The results (Fig. 7b) are in excellent agreement with the
analytical solution (thin lines). There are some notable
differences in the velocity field at the thin layer near the
leading edge of the spreading drop, but this is of minor
concern since there is little momentum associated with it,
and since the velocity remains properly bounded.

The second numerical experiment is based upon the
advective form of the momentum equation, i.e.,

­u
­t

1 u
­u
­x

5 2
­H
­x

. (5.8)

The left-hand side of (5.8), (5.2) is integrated using the
second-order MPDATA scheme (with IORD 5 2 and
without any flux correction), and the forcing term on the
right-hand side is treated similarly to the conservative
scheme discussed above (since MPDATA is inherently a
flux-form algorithm, the second term on the left-hand side
is viewed as 0.5­u2/­x). The results (Fig. 7c) show the
formation of shock-like structures at the leading edge of
the drop, in stark contrast with the analytical solution.
This erroneous behavior cannot be corrected for by higher
resolution; i.e., the scheme does not converge. This kind
of pathological behavior appears to be typical for a wide
range of numerical schemes based upon the advective form

FIG. 7. The spreading drop test. A parabola-shaped drop of shallow of the equations and has also been documented in the
water is released from rest on an underlying surface and spreads under

literature by Hartjenstein and Egger [16].the effect of gravity. Panel (a) shows the analytical solution according
It is well known that the use of non-conservative numeri-to [9] at 5 0, 1, 2, and 3. Full and dashed lines show the free surface of

the drop and the velocity, respectively. Panel (b) shows the numerical cal techniques can lead to seriously biased results whenever
results at time t 5 3 obtained with the use of the synchronization technique shocks or strong dissipation occur. The spreading-drop test
developed in this paper. For comparison, an integration based on a non- illustrated above is an example of a flow which is fully
conservative advective formulation is shown in (c). The thin lines in (b)

inviscid (cf. its analytical solution) but, nevertheless, proneand (c) show the analytical solution for comparison.
to serious deficiencies when integrated with a non-conser-
vative scheme. The apparent inability of the advective for-
mulation to describe the progression of the leading edge
of the drop results from the violation of momentum conser-schemes. There is a moving intersection and, as the drop

spreads with increasing velocity, a wide range of Courant vation. Consistent with this interpretation, advective nu-
merical formulations can be complemented with an explicitnumbers is encountered.

Here two experiments with both a conservative and a momentum-conservative pseudo-viscosity term of the form
discussed by [4, 25, 10]. The correct solution to the spread-non-conservative numerical formulation are tested. Both

the formulations employ zero-explicit diffusion, and the ing drop test can then be recovered. However, in order
for this approach to yield satisfactory results, the explicitright-hand side of (5.1) is evaluated using second-order-

accurate differencing in time and space following [33] dissipation of the scheme must be strong enough to clearly
overpower the false violation of momentum conservation(technically, this reduces to advecting momentum plus half

of its forcing, times Dt, and adding half of the new forcing, inherent to the scheme itself. Such a formulation is hence
overly diffusive.times Dt, afterwards). The resolution is Dx 5 0.05 and Dt 5

0.01. The rationales for comparing conservative and non- Although the results in Fig. 7 clearly indicate that the
conservative formulation is superior for the problem atconservative algorithms will become clear later in this

section. hand, most geophysical models of isentropic/isopycnic for-
mulations use some advective form of the equations whichIn the first numerical formulation, the left-hand side of

(5.1)–(5.2) is implemented by using the synchronous flux does not guarantee momentum conservation (see [1–4, 16],
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is displayed as a function of grid distance. Here the sub-
scripts refer to numerical and analytical solutions, and the
summation runs over all the grid-points. The correspond-
ing term for the mass variable shows similar characteristics
and is not further discussed. For reference, Fig. 8 also
displays the errors associated with a first-order numerical
formulation based upon the upstream scheme. At t 5 3,
the convergence of the former algorithm is merely 58%
faster, but the overall error of the latter scheme exceeds
that of the second-order formulation by 62% to 148% (de-
pending on the resolution). The third curve in Fig. 8 also
shows that the convergence rate at t 5 1 is substantially
faster than at t 5 3. Note, however, that the convergence
rate cannot be directly related to the order of accuracy of
the scheme, since the underlying flow solution is discon-
tinuous. Thus the mere statement of the improved conver-
gence with the higher order scheme is encouraging.

5.3. Two-Dimensional Hydrostatic Flow Past a Ridge
FIG. 8. Error measure (5.9) as a function of grid spacing. Empty and

As a last computational example, consideration is givenfull symbols are for a formulation based on the second-order synchronous
to the flow of an incompressible, non-rotating, density-flux correction with NITTE 5 2 iterations (cf. Fig. 7b) and for the first-

order upstream scheme, respectively. stratified Boussinesq fluid past a two-dimensional moun-
tain ridge. The system of equations is cast in isosteric coor-
dinates (cf. [27, 29]) and then takes on the formbut see also [23]). We believe that this tradition is related

to the difficulties in obtaining stable integrations based
upon the conservative form of the equations. In conserva- ­U

­t
1

­(uU)
­x

5 2
­p
­a

­M
­x

, (5.10)
tive formulations, the use of incompatible schemes for the
transport of mass and momentum can produce excessive
velocities near intersections of fluid surfaces with the un- ­

­t S­p
­aD1

­

­x Su
­p
­aD5 0. (5.11)

derlying terrain. With respect to the spreading-drop test,
we have observed that several higher order schemes are

Here a 5 r21 is the specific volume vertical coordinate ofunstable as a result of such incompatibilities. Examples
the model, r is the pressure, U 5 u(­p/­a) is horizontalinclude the Lax–Wendroff scheme (with or without tradi-
momentum, and M 5 ap 1 gh is the Montgomery potentialtional flux correction) and combinations of different
with h and g denoting the actual height of a density surfaceschemes for the transport of mass and momentum. On the
and the acceleration of gravity, respectively. The prognos-other hand, schemes which are fully or almost compatible
tic equations for momentum and mass continuity (5.10)–(such as the upstream and the MPDATA scheme; see
(5.11) are supplemented with the diagnostic relationshipAppendix A and Section 2.2) yield results similar to those
for the hydrostatic balance of the fluid, i.e.,shown in Fig. 7b.

One purpose of the synchronous flux correction pro-
posed in this paper is to correct the higher order fluxes ­M

­a
5 p. (5.12)

of an arbitrary scheme (or an arbitrary combination of
schemes) such that the resulting fluxes yield compatible
results. For isentropic, isopycnic, and shallow-water equa- The upper boundary condition incorporates the free sur-
tions, this feature guarantees that the velocity variable face assumption (p 5 constaRy), whereas for the lower
remains bounded, which in turn yields attractive stability boundary a material surface with a free-slip boundary con-
properties of the algorithm. dition is assumed.

Some indication of the convergence of the synchronous The numerical implementation of the system involves a
flux correction technique is presented in Fig. 8, where an regular mesh in (x, a), the quasi-horizontal transport of
error measure in terms of the layer-thickness (­p/­a), and the momentum-variable

U, according to (5.10)–(5.11), a discretization of the pres-
sure forcing term according to [33], the recovery of theEmom 5 FO [(Hu)num 2 (Hu)ana]2

O [(Hu)ana]2 G1/2

(5.9)
velocity from the momentum variable, and finally, the ver-
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FIG. 9. Vertical section showing the distribution of computational surfaces (corresponding to density surfaces, or isosteres) in stratified hydrostatic
flow past a two-dimensional ridge. The flow is from left to right. The underlying numerical transport scheme for these solutions are (a) the MPDATA
algorithm without flux correction and (b) the same algorithm but with traditional flux correction [31].

tical integration of (5.12). To simulate an infinite extent slope) and to the onset of gravity wave breaking (manifest-
ing itself in the neutrally stratified region aloft). The ex-of the fluid, a gravity-wave absorber [17] is employed in

the upper third of the model domain, and relaxation at plicit representation of the wave-breaking process would
require the consideration of the non-hydrostatic dynamicsthe inflow and outflow boundaries [8]. These latter regions

are excluded from the diagrams to be shown below. There in conjunction with some turbulence parameterization
(see, e.g., [21]). In our case the dissipation is accomplishedis zero explicit dissipation in the formulation. Some further

details of the model are described in [29]. with the implicit diffusion inherent to the transport scheme,
instead, and the approximate hydrostatic solution in Fig.The current experimental setup assumes uniform up-

stream profiles of u0 5 20 ms21, a constant Brunt–Väisällä 9a is qualitatively correct (compare with the corresponding
non-hydrostatic results published in [21]).frequency N 5 2.094 3 1022 s21, and a bell-shaped hill

The solution obtained in the above way is quite noisy,
and it proves difficult to achieve smooth and accurate solu-h(x) 5 H[1 1 (x/L)2]21 (5.13)
tions. The oscillations in Fig. 9a are the result of the nonlin-
ear coupling between equations (5.10)–(5.12), and cannotwith a horizontal scale L 5 12000 m and height H 5 1146

m. These flow parameters, characteristic of the downslope simply be removed by supplementing the transport algo-
rithm with classical flux correction (see Fig. 9b). Smoothwindstorm regime, were selected accordingly to [21, 29].

The computational domain covers 22 L and 3 l, where solution can be obtained with the first-order upstream
scheme, but this results in a significant under-estimation ofl 5 2fU/N denotes the vertical wavelength of hydrostatic

gravity waves. The computational resolution is 176 grid the upper-level gravity wave signal as a result of excessive
diffusion. Furthermore, as discussed in [29], adding someintervals in the horizontal, 61 isosteric levels initially

spaced at 300-m intervals, and the time-step is 6 s. Results weak diffusion to the momentum equation (or using the
first-order upstream scheme) results in a drastic underesti-will be shown after 2400 time-steps, corresponding to 24

characteristic time scales, T 5 L/u0 . mation of the neutrally stratified region which separates
the high-speed shooting flow near the surface from theHere we give examples and discuss the effect of various

transport schemes on the evolution of the flow. Figure 9a flow aloft. These results indicate that the solution is highly
dependent upon the way how dissipation is numericallyshows the numerical results using the MPDATA scheme

for the transport of the density and momentum variable. represented.
Figure 10 presents the results when applying the syn-After the flow is impulsively started from rest, a pattern of

vertically propagating gravity waves is established, which chronous and compatible flux-correction technique to the
transport of the prognostic variables U and (­p/­a). Theleads to the formation of a downslope windstorm (evident

from the almost collapsed density surfaces over the lee two panels show the results for NITTE 5 1 and 2 iterations.
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FIG. 10. As Fig. 9, but using the synchronous and compatible flux correction for the transport of mass and momentum. The two panels are
based upon flux-correction with (a) one iteration and (b) two iterations.

Both the integrations yield a fairly smooth and accurate after k iterations. Likewise, panel (b) shows the portion
of the fluxes transmitted in the kth iteration step. Thesolution, indicating that the implementation of the physi-

cally based compatibility constraint helps in mimicking two curves in the figure relate to the equations of
mass and x-momentum. It can be observed that thedissipation effects.

In order to further demonstrate the improvement of the ‘‘transmission rates’’ (panel b) are around 70% in the
first iteration step, between 50% and 60% in the secondsolution through iterative flux correction, we display in

Fig. 11 the objective quality measures earlier defined in iteration step, and subsequently drop to a few percent.
At the same time the overall rejection rate appears toSection 4. The respective numerical simulation is identical

to those shown in Fig. 10, except for using NITTE 5 4 converge to values near 15% (panel a). In our example
the iteration essentially converges in two steps. Thisiterations. At every timestep, (4.6)–(4.7) was monitored

for all iteration steps, and the averaged results over the rapid convergence is, however, not a universal property
of the proposed scheme. For two-dimensional shallow-whole integration are shown in Fig. 11. Panel (a) presents

the portion of the second-order fluxes which is rejected water flow past isolated topography (discussed in [25,

FIG. 11. Effectiveness of iterative synchronous flux correction for a simulation similar to those in Fig. 10, but using NITTE 5 4 iteration steps.
Panel (a) shows the ‘‘rejected’’ portion of the higher order fluxes after 1, 2, 3, and 4 iteration-steps, and panel (b) shows the ‘‘transmitted’’ portion
of the fluxes as a function of the iteration step. The two curves relate to the higher order fluxes associated with the transport of mass and the momentum.
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26, 13]), we have observed that the convergence requires the one-dimensional case with one substance, but the gen-
eralization to the full proof is straightforward. Considerthree to four iteration steps.
the transport of r and an additional substance A, i.e.,

6. CONCLUDING REMARKS

In this paper consideration was given to the coupled
­r

­t
1

­

­x
(ur) 5 0, (A1a)

transport of density and additional conserved quantities
according to (1.4)–(1.5). For this case, a synchronous and ­A

­t
1

­

­x
(uA) 5 0, (A1b)iterative flux correction technique was developed which

ensures that the mixing ratios al 5 Al/r behave in accor-
dance with the Lagrangian form of the transport equation. to be accomplished with the sign-preserving and linear
This property of a scheme is referred to as compatibility. upstream scheme. The latter can be cast into the form
In the current paper we have studied the case in the absence
of sources and sinks. In this case ‘‘natural’’ limiters do

rn11
i 5 O1

j521
ci, jr

n
i1j , (A2a)derive from the compatibility constraint, and the flux cor-

rection can be achieved without resorting to bounds de-
rived from a first-order time-step.

An11
i 5 O1

j521
ci, jAn

i1j . (A2b)If coupled transport equations (1.2)–(1.3), including
source terms R ? 0 are considered, the formalism might
be generalized using the advective form of (1.3), viz.,

The linearity of the scheme implies that the c-coefficients
do not depend on the transported field, but on the velocity-d

dt SVl

r
D5

Rl

r
, (6.1) field alone; i.e., the same coefficients appear in (A2a) and

(A2b). In order to be sign-preserving (for an arbitrary
functional shape of a non-negative r), the c-coefficients inwhich could serve as the basis for a generalized algorithm.
(A2) must, in addition, be positive. The effects of (A2) onFollowing the treatment in classical FCT, the procedure
the mixing ratio a 5 A/r are obtained after dividing (A2b)could involve a first-order estimate of (6.1), and general-
by (A2a). This yieldsized bounds in (2.3) could then be obtained using pre-

dictor–corrector ideas. This procedure collapses to (2.4)
in the case of R 5 0 and is left for future research. an11

i 5 O1
j521

dn
i, jan

i1j (A3)
Another aspect considered in this study is the iterative

application of flux corrections. This procedure does help
to reduce the portion of the rejected anti-diffusive fluxes, with
and it was demonstrated that it helps in reducing the behav-
ioral errors of traditional FCT schemes.

The synchronous and iterative flux correction algorithm dn
i, j 5 ci, jr

n
i1j SO1

j521
ci, jr

n
i1jD21

for j 5 21 to 1. (A4)
is not overly expensive (i.e., about twice the cost of trans-
porting the substances with classical FCT), but it can be

It can be verified thatin conflict with the programming structure of complicated
codes since it requires the simultaneous transport of the
variables. Nevertheless the new technique appears useful O1

j521
dn

i, j 5 1. (A5)for various flow problems. In relation to the transport of
density and momentum, the issue of compatibility is partic-
ularly germane to fluids with large density variations, as Together with dn

i, j $ 0, this implies that (A3) simply ex-
they occur in some combustion problems and in situations presses the mixing ratio an11

i at time-level n 1 1 as some
where a fluid is released into a low density environment weighted average of an

i21 , an
i , and an

i11 at time-level n. It
or into the vacuum. Compatibility between density and follows that the one-dimensional scheme under consider-
momentum can also become a crucial issue in isentropic, ation is compatible, i.e.,
isosteric, and isopycnic formulations of hydrostatic fluids
with small density variations. min(an

i21 , an
i , an

i11) # an11
i # max(an

i21 , an
i , an

i11). (A6)

APPENDIX A: COMPATIBILITY OF THE
This proof can easily be generalized to multi-dimensionalUPSTREAM SCHEME
geometry and to the case of several substances. In addition,
it can be generalized to an arbitrary linear, positive definiteIn this appendix it is shown that the upstream scheme

is compatible. For simplicity the proof is carried out for finite-difference scheme with forward time-stepping.
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It is worth noting that the compatibility of the upstream The bounds given by (B4) are next utilized in order to
derive explicit expressions for the limiting coefficients bscheme even holds in the presence of massless gridpoints

and, in the strict sense, as outlined in the last paragraph such as to satisfy the compatibility relation (2.3). For this
analysis a case distinction is employed. Consider first equa-of Section 2.1. This follows upon noting that
tion (3.10a) with amin

i, j $ 0. Introducing (B4) into (3.10a)
yields

dn
i, jan

i1j 5 ci, jAn
i1j SO1

j521
ci, jr

n
i1jD21

amin
i, j r0

i, j 2 A0
i, j # bA,OUT

i, j Aout
i, j 2 amin

i, j br,IN
i, j rin

i, j . (B5)

and the contribution of a massless gridpoint (with A 5
This is a sufficient condition which can, in principle, ber 5 0) to an11

i in (A3) is zero.
met by a range of choices for br,IN

i, j and bA,OUT
i, j . Recalling

that we are considering the case with amin
i, j $ 0, we stipulateAPPENDIX B: DERIVATION OF THE

that these two coefficients should satisfyCORRECTION COEFFICIENTS

Here the correction coefficients bA,OUT, bA,IN, br,OUT, br,IN
i, j # bA,OUT

i, j . (B6)
and br,IN are derived for the situation discussed in Section
3. First the case of a coupled system of Eqs. (1.4), (1.5) As can be verified a posteriori, this stipulation yields an
with L 5 1 substance will be treated. For brevity we will equitable distribution of the flux correction onto the two
also assume two-dimensional geometry, but the generaliza- variables. Introducing (B6) into (B5) yields
tion to arbitrary dimensions is straightforward.

amin
i, j r0

i, j 2 A0
i, j # bA,OUT

i, j [Aout
i, j 2 amin

i, j rin
i, j] (B7)

(a) Density and One Additional Conserved Substance

We start by splitting the second-order corrections and an upper bound for bA,OUT
i, j is obtained as

A9i, j and r9i, j appearing in (3.6) into contributions arising
from in- and out-coming fluxes, i.e.,

bA,OUT
i, j #

amin
i, j r0

i, j 2 A0
i, j

Aout
i, j 2 amin

i, j rin
i, j 2 «

, (B8)

c9i, j 5 cin
i, j 1 cout

i, j , (B1)

where a small number « (e.g., « 5 10220) has been intro-
where the symbol c stands for A or r and where duced into the denominator for computational efficiency.

In deriving (B8), we did use knowledge of the sign of the
cin

i, j 5 (Fc,1
i21/2, j)1 2 (Fc,1

i11/2, j)2 1 (Fc,2
i, j21/2)1 2 (Fc,2

i, j11/2)2, individual terms. For instance, from the fact that the low-
(B2a) order approximation satisfies the compatibility relation

(2.3) we havecout
i, j 5 (Fc,1

i21/2, j)2 2 (Fc,1
i11/2, j)1 1 (Fc,2

i, j21/2)2 2 (Fc,2
i, j11/2)1.

(B2b)
amin

i, j # (A0/r0)i, j # amax
i, j , (B9)

Here the lower-case superscripts ‘‘in’’ and ‘‘out’’ must be
and with amin

i, j $ 0, as assumed above, it follows that thedistinguished from the upper-case superscripts appearing
numerator of (B8) is negative. Similarly, all the individualin (3.7). The two contributions satisfy c in

i, j $ 0 and c out
i, j #

terms contributing to the denominator are negative as well.0 and thus, as follows from (B1), provide bounds for Ã
The preceding analysis has to be performed for Eq.and r̃ for any type of flux correction, i.e.,

(3.10a) and both signs of amin
i, j , as well as for Eq. (3.10b)

and both signs of amax
i, j . The results of these four cases arec out

i, j # c̃9 # c in
i, j . (B3)

listed in Table I. In order to avoid the computationally
costly case distinctions in the table, the correction coeffi-Upon introducing the specific form (3.7) of the anticipated
cients can efficiently be summarized, as given by (3.11)flux correction into (B3) one obtains
and (3.12) in the main text.

bc,OUT
i, j c out

i, j # c̃9 # bc,IN
i, j c in

i, j . (B4)
(b) Density and an Arbitrary Number of

Conserved Substances
In essence, these bounds are based on a worst-case sce-
nario. For instance, the smallest values of c̃9 are realized The generalization to the case of a mass-conservation

equation (1.4) and L substance equations of type (1.5) iswhen the incoming fluxes c in
i, j are reduced to zero while

the outgoing fluxes are left unchanged by the correction. straightforward. Equation (3.11) is almost unchanged, i.e.,
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TABLE I ũI
i1(1/2)eI

; [uuI
i1(1/2)eI

uDXI 2 Dt(uI
i1(1/2)eI

)2]

Limiting Coefficients for Various Cases

3
uc*i1eI

u 2 uc*i u

uc*i1eI
u 1 uc*i u 1 «

2 OM
J51
J?1

0.5Dt uI
i1(1/2)eI

uJ
i1(1/2)eI

Case bA br

Eq. (3.10a) with amin
i, j $ 0 br,IN

i, j # bA,OUT
i, jbA,OUT

i, j #
amin

i, j r0
i, j 2 A0

i, j

Aout
i, j 2 amin

i, j r in
i, j 2 «

3
uc*i1eI1eJ

1 c*i1eJ
u 2 uc*i1eI2eJ

1 c*i2eJ
u

uc*i1eI1eJ
1 c*i1eJ

u 1 uc*i1eI2eJ
1 c*i2eJ

u 1 «Eq. (3.10a) with amin
i, j # 0 br,OUT

i, j # bA,OUT
i, jbA,OUT

i, j #
amin

i, j r0
i, j 2 A0

i, j

Aout
i, j 2 amin

i, j rout
i, j 2 «

(C1)
Eq. (3.10b) with amax

i, j $ 0 br,OUT
i, j # bA,IN

i, jbA,IN
i, j #

amax
i, j r0

i, j 2 A0
i, j

Ain
i, j 2 amax

i, j rout
i, j 1 «

instead of Eq. (13) in [28]. When using the generalized

Eq. (3.10b) with amax
i, j # 0 br,IN

i, j # bA,IN
i, j

MPDATA algorithm with the nonoscillatory option, Eq.bA,IN
i, j #

amax
i, j r0

i, j 2 A0
i, j

Ain
i, j 2 amax

i, j r in
i, j 1 « (15) in [31] must, in addition, be replaced with

ÃI
i1(1/2)eI

5 [AI
i1(1/2)eI

]1 3 [min(1, bQ
i , bq

i1eI
)sign(ci)1

bAl,OUT
i, j 5

(al)min
i, j r0

i, j 2 (A0
l )i, j

(Al)out
i, j 2 [(al)min

i, j ]1 rin
i, j 2 [(al)min

i, j ]2 rout
i, j 2 «

2 min(1, bq
i , bQ

i1el
)sign(2ci)1] (C.2)(B10a)

1 [AI
i1(1/2)eI

]2 3 [min(1, bq
i , bQ

i1eI
)sign(ci1eI

)1

bAl,IN
i, j 5

(al)max
i, j r0

i, j 2 (A0
l )i, j

(Al)in
i, j 2 [(al)max

i, j ]1 rin
i, j 2 [(al)max

i, j ]2 rout
i, j 1 «

2 min(1, bQ
i , bq

i1el
)sign(2ci1eI

)1].
(B10b)

However, this form was not utilized in the synchronizedwhile there is a significant change to the correction coeffi-
flux correction described in Section 3, since in our case thecients (3.12) of the mass-conservation equation. They can
flux correction is performed directly on the level of thebe expressed with a conditional min statement of the form
fluxes rather than on the level of the anti-diffusive veloci-
ties as in [31].

br,IN
i, j 5 min

1#l#L
hbAl,IN

i, j 1 sign1[(al)max
i, j ], The formulation given above is strictly sign-preserving

when applied to purely positive or negative fields but, also,
bAl,OUT

i, j 2 sign2[(al)min
i, j ]j (B11a) able to cope with fields involving both signs. Tests in one

and two dimensions have revealed that the use of (C.1)–
br,OUT

i, j 5 min
1#l#L

hbAl,OUT
i, j 1 sign1[(al)min

i, j ], (C.2) gives virtually identical results as are obtained when
splitting the field into positive and negative parts and trans-
porting these fields individually with the standard formula-bAl,IN

i, j 2 sign2[(al)max
i, j ]j (B11b)

tion developed in [28, 31].

The complication arises since there are now 4L bounds of
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